MathDB
Inmo 2015

Source: inmo 2015 #6

February 1, 2015
quadraticsmodular arithmeticpigeonhole principlenumber theory

Problem Statement

Show that from a set of 1111 square integers one can select six numbers a2,b2,c2,d2,e2,f2a^2,b^2,c^2,d^2,e^2,f^2 such that a2+b2+c2d2+e2+f2(mod12)a^2+b^2+c^2 \equiv d^2+e^2+f^2\pmod{12}.