MathDB
2024 COMC C1

Source:

November 4, 2024
Comc

Problem Statement

Let the function f(x,y,t)=x2y22(xyt)21t2f(x,y,t)=\frac{x^2-y^2}{2}-\frac{(x-yt)^2}{1-t^2} for all real values x,yx,y and t±1t\not=\pm1 a) Evaluate f(2,0,3)f(2,0,3) and f(0,2,3)f(0,2,3). b) Show that f(x,y,0)=f(y,x,0)f(x,y,0)=f(y,x,0) for any values of (x,y)(x,y). c) Show that f(x,y,t)=f(y,x,t)f(x,y,t)=f(y,x,t) for any values of (x,y)(x,y) and t±1t\not=\pm1. d) Given g(x,y,s)=(x2y2)(1+sin(s))2(xysin(s))21sin(s)g(x,y,s)=\frac{(x^2-y^2)(1+\sin(s))}{2} -\frac{(x-y\sin(s))^2}{1-\sin(s)} for all real values x,yx,y and sπ2+2πks\not=\frac{\pi}{2}+2\pi k, where kk is an integer number, show that g(x,y,s)=g(y,x,s)g(x,y,s)=g(y,x,s) for any values of (x,y)(x,y) and ss in the domain of g(x,y,s)g(x,y,s).