Let the function f(x,y,t)=2x2−y2−1−t2(x−yt)2 for all real values x,y and t=±1
a) Evaluate f(2,0,3) and f(0,2,3).
b) Show that f(x,y,0)=f(y,x,0) for any values of (x,y).
c) Show that f(x,y,t)=f(y,x,t) for any values of (x,y) and t=±1.
d) Given
g(x,y,s)=2(x2−y2)(1+sin(s))−1−sin(s)(x−ysin(s))2
for all real values x,y and s=2π+2πk, where k is an integer number, show that g(x,y,s)=g(y,x,s) for any values of (x,y) and s in the domain of g(x,y,s).