MathDB
VMO 2020 -P3

Source: VMO-2020-Day1-P3

December 27, 2019
Sequencenumber theory

Problem Statement

Let a sequence (an)(a_n) satisfy: a1=5,a2=13a_1=5,a_2=13 and an+1=5an6an1,n2a_{n+1}=5a_n-6a_{n-1},\forall n\ge2 a) Prove that (an,an+1)=1,n1(a_n, a_{n+1})=1,\forall n\ge1 b) Prove that: 2k+1p1kN2^{k+1}|p-1\forall k\in\mathbb{N}, if p is a prime factor of a2ka_{2^k}