MathDB
Today's calculation of Integral 166

Source: Toyama Medical and Pharmaceutical University entrance exam 1989

November 11, 2006
calculusintegrationlimitlogarithmscalculus computations

Problem Statement

Express the following the limit values in terms of a definite integral and find them. (1) I=limn1nln(1+1n)(1+2n)(1+nn).I=\lim_{n\to\infty}\frac{1}{n}\ln \left(1+\frac{1}{n}\right)\left(1+\frac{2}{n}\right)\cdots\cdots \left(1+\frac{n}{n}\right). (2) J=limn1n2(n21+n222++n2n2).J=\lim_{n\to\infty}\frac{1}{n^{2}}(\sqrt{n^{2}-1}+\sqrt{n^{2}-2^{2}}+\cdots\cdots+\sqrt{n^{2}-n^{2}}). (3) K=limn1n3(n2+1+2n2+22++nn2+n2).K=\lim_{n\to\infty}\frac{1}{n^{3}}(\sqrt{n^{2}+1}+2\sqrt{n^{2}+2^{2}}+\cdots+n\sqrt{n^{2}+n^{2}}).