MathDB
Congruence equation modulo p

Source: 2019 Baltic Way P17

November 18, 2019
number theory

Problem Statement

Let pp be an odd prime. Show that for every integer cc, there exists an integer aa such that ap+12+(a+c)p+12c(modp).a^{\frac{p+1}{2}} + (a+c)^{\frac{p+1}{2}} \equiv c\pmod p.