MathDB
MA,MB,MC intersect the lines BC,CA,AB

Source: VAIMO 2, German Pre-TST 2003

July 17, 2011

Problem Statement

Given a triangle ABCABC and a point MM such that the lines MA,MB,MCMA,MB,MC intersect the lines BC,CA,ABBC,CA,AB in this order in points D,ED,E and F,F, respectively. Prove that there are numbers ϵ1,ϵ2,ϵ3{1,1}\epsilon_1, \epsilon_2, \epsilon_3 \in \{-1, 1\} such that:
ϵ1MDAD+ϵ2MEBE+ϵ3MFCF=1.\epsilon_1 \cdot \frac{MD}{AD} + \epsilon_2 \cdot \frac{ME}{BE} + \epsilon_3 \cdot \frac{MF}{CF} = 1.