MathDB
Problems
Contests
International Contests
Silk Road
2010 Silk Road
3
SRMC 2010 P3
SRMC 2010 P3
Source:
December 7, 2015
inequalities
Problem Statement
For positive real numbers
a
,
b
,
c
,
d
,
a, b, c, d,
a
,
b
,
c
,
d
,
satisfying the following conditions:
a
(
c
2
−
1
)
=
b
(
b
2
+
c
2
)
a(c^2 - 1)=b(b^2+c^2)
a
(
c
2
−
1
)
=
b
(
b
2
+
c
2
)
and
d
≤
1
d \leq 1
d
≤
1
, prove that :
d
(
a
1
−
d
2
+
b
2
1
+
d
2
)
≤
(
a
+
b
)
c
2
d(a \sqrt{1-d^2} + b^2 \sqrt{1+d^2}) \leq \frac{(a+b)c}{2}
d
(
a
1
−
d
2
+
b
2
1
+
d
2
)
≤
2
(
a
+
b
)
c
Back to Problems
View on AoPS