MathDB
Putnam 1947 B2

Source: Putnam 1947

April 3, 2022
Putnamapproximationdifferentiable function

Problem Statement

Let f(x)f(x) be a differentiable function defined on the interval (0,1)(0,1) such that f(x)M|f'(x)| \leq M for 0<x<10<x<1 and a positive real number M.M. Prove that 01f(x)  dx1nk=1nf(kn)Mn.\left| \int_{0}^{1} f(x)\; dx - \frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n} \right) \right | \leq \frac{M}{n}.