MathDB
Problems
Contests
Undergraduate contests
Putnam
1986 Putnam
B4
Putnam 1986 B4
Putnam 1986 B4
Source:
August 5, 2019
Putnam
Problem Statement
For a positive real number
r
r
r
, let
G
(
r
)
G(r)
G
(
r
)
be the minimum value of
∣
r
−
m
2
+
2
n
2
∣
|r - \sqrt{m^2+2n^2}|
∣
r
−
m
2
+
2
n
2
∣
for all integers
m
m
m
and
n
n
n
. Prove or disprove the assertion that
lim
r
→
∞
G
(
r
)
\lim_{r\to \infty}G(r)
lim
r
→
∞
G
(
r
)
exists and equals
0.
0.
0.
Back to Problems
View on AoPS