MathDB
Problems
Contests
National and Regional Contests
Russia Contests
All-Russian Olympiad
1983 All Soviet Union Mathematical Olympiad
357
ASU 357 All Soviet Union MO 1983 sin^2a+sin^2a = sin(a+b)
ASU 357 All Soviet Union MO 1983 sin^2a+sin^2a = sin(a+b)
Source:
July 28, 2019
trigonometry
Problem Statement
Two acute angles
a
a
a
and
b
b
b
satisfy condition
sin
2
a
+
sin
2
b
=
sin
(
a
+
b
)
\sin^2a+\sin^2b = \sin(a+b)
sin
2
a
+
sin
2
b
=
sin
(
a
+
b
)
Prove that
a
+
b
=
π
/
2
a + b = \pi /2
a
+
b
=
π
/2
.
Back to Problems
View on AoPS