MathDB
A bit of a minimum, more of a maximum

Source: Indonesian National Science Olympiad 2018, Mathematics P5

July 6, 2018
algebra

Problem Statement

Find all triples of reals (x,y,z)(x,y,z) satisfying:
{13min{x,y}+23max{x,y}=201713min{y,z}+23max{y,z}=201813min{z,x}+23max{z,x}=2019\begin{cases} \frac{1}{3} \min \{x,y\} + \frac{2}{3} \max \{x,y\} = 2017 \\ \frac{1}{3} \min \{y,z\} + \frac{2}{3} \max \{y,z\} = 2018 \\ \frac{1}{3} \min \{z,x\} + \frac{2}{3} \max \{z,x\} = 2019 \\ \end{cases}