MathDB
2017 Shortlist/A5

Source:

July 10, 2018
algebrainequalitiesIMO Shortlist

Problem Statement

An integer n3n \geq 3 is given. We call an nn-tuple of real numbers (x1,x2,,xn)(x_1, x_2, \dots, x_n) Shiny if for each permutation y1,y2,,yny_1, y_2, \dots, y_n of these numbers, we have i=1n1yiyi+1=y1y2+y2y3+y3y4++yn1yn1.\sum \limits_{i=1}^{n-1} y_i y_{i+1} = y_1y_2 + y_2y_3 + y_3y_4 + \cdots + y_{n-1}y_n \geq -1. Find the largest constant K=K(n)K = K(n) such that 1i<jnxixjK\sum \limits_{1 \leq i < j \leq n} x_i x_j \geq K holds for every Shiny nn-tuple (x1,x2,,xn)(x_1, x_2, \dots, x_n).