MathDB
Problems
Contests
Undergraduate contests
Putnam
2021 Putnam
B2
Putnam 2021 B2
Putnam 2021 B2
Source:
December 5, 2021
Putnam
Putnam 2021
Problem Statement
Determine the maximum value of the sum
S
=
∑
n
=
1
∞
n
2
n
(
a
1
a
2
…
a
n
)
1
n
S=\sum_{n=1}^{\infty}\frac{n}{2^n}(a_1 a_2 \dots a_n)^{\frac{1}{n}}
S
=
n
=
1
∑
∞
2
n
n
(
a
1
a
2
…
a
n
)
n
1
over all sequences
a
1
,
a
2
,
a
3
,
…
a_1,a_2,a_3,\dots
a
1
,
a
2
,
a
3
,
…
of nonnegative real numbers satisfying
∑
k
=
1
∞
a
k
=
1.
\sum_{k=1}^{\infty}a_k=1.
k
=
1
∑
∞
a
k
=
1.
Back to Problems
View on AoPS