MathDB
Inequality with reals a,b,c,d and x_i, y_i

Source: Chinese Mathematical Olympiad 2003 Problem 6

February 18, 2012
inequalitiesinequalities proposed

Problem Statement

Suppose a,b,c,da,b,c,d are positive reals such that ab+cd=1ab+cd=1 and xi,yix_i,y_i are real numbers such that xi2+yi2=1x_i^2+y_i^2=1 for i=1,2,3,4i=1,2,3,4. Prove that (ax1+bx2+cx3+dx4)2+(ay4+by3+cy2+dy1)22(a2+b2ab+c2+d2cd).(ax_1+bx_2+cx_3+dx_4)^2+(ay_4+by_3+cy_2+dy_1)^2\le 2\left(\frac{a^2+b^2}{ab}+\frac{c^2+d^2}{cd}\right).
Li Shenghong