Let n be a positive integer. Consider the sum x1y1+x2y2+⋯+xnyn, where that values of the variables x1,x2,…,xn,y1,y2,…,yn are either 0 or 1.Let I(n) be the number of 2n-tuples (x1,x2,…,xn,y1,y2,…,yn) such that the sum of the number is odd, and let P(n) be the number of 2n-tuples (x1,x2,…,xn,y1,y2,…,yn) such that the sum is an even number. Show that: I(n)P(n)=2n−12n+1