MathDB
Putnam 1967 B2

Source: Putnam 1967

May 14, 2022
Putnaminequalities

Problem Statement

Let 0p,r10\leq p,r\leq 1 and consider the identities a)  (px+(1p)y)2=ax2+bxy+cy2,      b)  (px+(1p)y)(rx+(1r)y)=αx2+βxy+γy2.a)\; (px+(1-p)y)^{2}=a x^2 +bxy +c y^2, \;\;\;\, b)\; (px+(1-p)y)(rx+(1-r)y) =\alpha x^2 + \beta xy + \gamma y^2. Show that a)  max(a,b,c)49,        b)  max(α,β,γ)49. a)\; \max(a,b,c) \geq \frac{4}{9}, \;\;\;\; b)\; \max( \alpha, \beta , \gamma) \geq \frac{4}{9}.