MathDB
Nice Algebra

Source:

September 16, 2023
algebra

Problem Statement

Given nN+,n3,a1,a2,,anR+.n\in\mathbb N_+,n\ge 3,a_1,a_2,\cdots ,a_n\in\mathbb R_+. Let b1,b2,,bnR+b_1,b_2,\cdots ,b_n\in\mathbb R_+ satisfy that for k{1,2,,n},\forall k\in\{1,2,\cdots ,n\}, i,j{1,2,,n}\{k}ijaibj=0.\sum_{\substack{i,j\in\{1,2,\cdots ,n\}\backslash \{k\}\\i\neq j}}a_ib_j=0. Prove that b1=b2==bn=0.b_1=b_2=\cdots =b_n=0.