MathDB
Today's calculation of Integral 153

Source: Waseda University entrance exam/Science and Engineering 1980

September 6, 2006
calculusintegrationconicsellipsetrigonometryanalytic geometrygraphing lines

Problem Statement

Draw the perpendicular to the tangent line of the ellipse x2a2+y2b2=1 (a>0, b>0)\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1\ (a>0,\ b>0) from the origin O(0, 0).O(0,\ 0). Let θ\theta be the angle between the perpendicular and the positive direction of xx axis. Denote the length of the perpendicular by r(θ).r(\theta). Calculate 02πr(θ)2 dθ.\int_{0}^{2\pi}r(\theta )^{2}\ d\theta.