MathDB
IMC 2016, Problem 8

Source: IMC 2016

July 28, 2016
IMCIMC 2016college contestsabstract algebrafunction

Problem Statement

Let nn be a positive integer, and denote by Zn\mathbb{Z}_n the ring of integers modulo nn. Suppose that there exists a function f:ZnZnf:\mathbb{Z}_n\to\mathbb{Z}_n satisfying the following three properties:
(i) f(x)xf(x)\neq x,
(ii) f(f(x))=xf(f(x))=x,
(iii) f(f(f(x+1)+1)+1)=xf(f(f(x+1)+1)+1)=x for all xZnx\in\mathbb{Z}_n.
Prove that n2(mod4)n\equiv 2 \pmod4.
(Proposed by Ander Lamaison Vidarte, Berlin Mathematical School, Germany)