MathDB
Unique NT Function

Source: IMO SL 2018 N6

July 17, 2019
functionnumber theoryIMO Shortlist

Problem Statement

Let f:{1,2,3,}{2,3,}f : \{ 1, 2, 3, \dots \} \to \{ 2, 3, \dots \} be a function such that f(m+n)f(m)+f(n)f(m + n) | f(m) + f(n) for all pairs m,nm,n of positive integers. Prove that there exists a positive integer c>1c > 1 which divides all values of ff.