Let A=3!⋅4!22+3⋅2+1+4!⋅5!32+3⋅3+1+5!⋅6!42+3⋅4+1+⋯+11!⋅12!102+3⋅10+1. What is the remainder when 11!⋅12!⋅A is divided by 11?<spanclass=′latex−bold′>(A)</span>0<spanclass=′latex−bold′>(B)</span>1<spanclass=′latex−bold′>(C)</span>5<spanclass=′latex−bold′>(D)</span>8<spanclass=′latex−bold′>(E)</span>10