MathDB
Turkey NMO 2008 1st Round - P26 (Number Theory)

Source:

August 26, 2012
factorial

Problem Statement

Let A=22+32+13!4!+32+33+14!5!+42+34+15!6!++102+310+111!12!A=\frac{2^2+3\cdot 2 + 1}{3! \cdot 4!} + \frac{3^2+3\cdot 3 + 1}{4! \cdot 5!} + \frac{4^2+3\cdot 4 + 1}{5! \cdot 6!} + \dots + \frac{10^2+3\cdot 10 + 1}{11! \cdot 12!}. What is the remainder when 11!12!A11!\cdot 12! \cdot A is divided by 1111?
<spanclass=latexbold>(A)</span> 0<spanclass=latexbold>(B)</span> 1<spanclass=latexbold>(C)</span> 5<spanclass=latexbold>(D)</span> 8<spanclass=latexbold>(E)</span> 10 <span class='latex-bold'>(A)</span>\ 0 \qquad<span class='latex-bold'>(B)</span>\ 1 \qquad<span class='latex-bold'>(C)</span>\ 5 \qquad<span class='latex-bold'>(D)</span>\ 8 \qquad<span class='latex-bold'>(E)</span>\ 10