MathDB
Prove this 8 variable inequality

Source: 2019 Jozsef Wildt International Math Competition

May 20, 2020
inequalities

Problem Statement

If aa, bb, c1c \geq 1; yx1y \geq x \geq 1; pp, qq, r>0r > 0 then(1+y(apbqcr)1p+q+r1+x(apbqcr)1p+q+r)p+q+r(apbqcr)1p+q+r(1+xa1+ya)pa(1+xb1+yb)qb(1+xc1+yc)rc\left(\frac{1+y\left(a^pb^qc^r\right)^{\frac{1}{p+q+r}}}{1+x\left(a^pb^qc^r\right)^{\frac{1}{p+q+r}}}\right)^{\frac{p+q+r}{\left(a^pb^qc^r\right)^{\frac{1}{p+q+r}}}}\left(\frac{1+xa}{1+ya}\right)^{\frac{p}{a}}\left(\frac{1+xb}{1+yb}\right)^{\frac{q}{b}}\left(\frac{1+xc}{1+yc}\right)^{\frac{r}{c}} cyc(1+y(apbq)1p+q1+x(apbq)1p+q)p+q(apbq)1p+q\geq \prod \limits_{cyc}\left(\frac{1+y\left(a^pb^q\right)^{\frac{1}{p+q}}}{1+x\left(a^pb^q\right)^{\frac{1}{p+q}}}\right)^{\frac{p+q}{\left(a^pb^q\right)^{\frac{1}{p+q}}}}