MathDB
Socialists Republic Of Czechoslovakia 4

Source: IMO LongList 1959-1966 Problem 26

September 2, 2004
inequalitiesn-variable inequalityalgebraIMO ShortlistIMO Longlist

Problem Statement

Prove the inequality
a.) (a1+a2+...+ak)2k(a12+a22+...+ak2), \left( a_{1}+a_{2}+...+a_{k}\right) ^{2}\leq k\left( a_{1}^{2}+a_{2}^{2}+...+a_{k}^{2}\right) ,
where k1k\geq 1 is a natural number and a1,a_{1}, a2,a_{2}, ...,..., aka_{k} are arbitrary real numbers.
b.) Using the inequality (1), show that if the real numbers a1,a_{1}, a2,a_{2}, ...,..., ana_{n} satisfy the inequality
a1+a2+...+an(n1)(a12+a22+...+an2), a_{1}+a_{2}+...+a_{n}\geq \sqrt{\left( n-1\right) \left( a_{1}^{2}+a_{2}^{2}+...+a_{n}^{2}\right) },
then all of these numbers a1,a_{1}, a2,a_{2}, ,\ldots, ana_{n} are non-negative.