Prove the inequalitya.) (a1+a2+...+ak)2≤k(a12+a22+...+ak2),where k≥1 is a natural number and a1,a2,...,ak are arbitrary real numbers.b.) Using the inequality (1), show that if the real numbers a1,a2,...,an satisfy the inequalitya1+a2+...+an≥(n−1)(a12+a22+...+an2),then all of these numbers a1,a2,…,an are non-negative.