MathDB
Putnam 1960 B7

Source: Putnam 1960

June 18, 2022
Putnamfunctioninequalitiesdifferential equation

Problem Statement

Let g(t)g(t) and h(t)h(t) be real, continuous functions for t0.t\geq 0. Show that any function v(t)v(t) satisfying the differential inequality dvdt+g(t)vh(t),    v(t)=c,\frac{dv}{dt}+g(t)v \geq h(t),\;\; v(t)=c, satisfies the further inequality v(t)u(t),v(t)\geq u(t), where dudt+g(t)u=h(t),    u(t)=c.\frac{du}{dt}+g(t)u = h(t),\;\; u(t)=c. From this, conclude that for sufficiently small t>0,t>0, the solution of dvdt+g(t)v=v2,    v(t)=c\frac{dv}{dt}+g(t)v = v^2 ,\;\; v(t)=c may be written v=maxw(t)(ce0tg(s)2w(s)ds0te0tg(s)2w(s)dsw(s)2ds),v=\max_{w(t)} \left( c e^{- \int_{0}^{t} |g(s)-2w(s)| \, ds} -\int_{0}^{t} e^{-\int_{0}^{t} |g(s')-2w(s')| \, ds'} w(s)^{2} ds \right), where the maximum is over all continuous functions w(t)w(t) defined over some tt-interval [0,t0].[0,t_0 ].