MathDB
Problems
Contests
National and Regional Contests
China Contests
China Team Selection Test
2008 China Team Selection Test
5
Chinese TST 2008 P5
Chinese TST 2008 P5
Source:
April 4, 2008
function
inequalities
Cauchy Inequality
algebra proposed
algebra
Problem Statement
For two given positive integers
m
,
n
>
1
m,n > 1
m
,
n
>
1
, let
a
i
j
(
i
=
1
,
2
,
⋯
,
n
,
j
=
1
,
2
,
⋯
,
m
)
a_{ij} (i = 1,2,\cdots,n, \; j = 1,2,\cdots,m)
a
ij
(
i
=
1
,
2
,
⋯
,
n
,
j
=
1
,
2
,
⋯
,
m
)
be nonnegative real numbers, not all zero, find the maximum and the minimum values of
f
f
f
, where
f
=
n
∑
i
=
1
n
(
∑
j
=
1
m
a
i
j
)
2
+
m
∑
j
=
1
m
(
∑
i
=
1
n
a
i
j
)
2
(
∑
i
=
1
n
∑
j
=
1
m
a
i
j
)
2
+
m
n
∑
i
=
1
n
∑
j
=
1
m
a
i
j
2
.
f = \frac {n\sum_{i = 1}^{n}(\sum_{j = 1}^{m}a_{ij})^2 + m\sum_{j = 1}^{m}(\sum_{i= 1}^{n}a_{ij})^2}{(\sum_{i = 1}^{n}\sum_{j = 1}^{m}a_{ij})^2 + mn\sum_{i = 1}^{n}\sum_{j=1}^{m}a_{ij}^2}.
f
=
(
∑
i
=
1
n
∑
j
=
1
m
a
ij
)
2
+
mn
∑
i
=
1
n
∑
j
=
1
m
a
ij
2
n
∑
i
=
1
n
(
∑
j
=
1
m
a
ij
)
2
+
m
∑
j
=
1
m
(
∑
i
=
1
n
a
ij
)
2
.
Back to Problems
View on AoPS