MathDB
Chinese TST 2008 P5

Source:

April 4, 2008
functioninequalitiesCauchy Inequalityalgebra proposedalgebra

Problem Statement

For two given positive integers m,n>1 m,n > 1, let aij(i=1,2,,n,  j=1,2,,m) a_{ij} (i = 1,2,\cdots,n, \; j = 1,2,\cdots,m) be nonnegative real numbers, not all zero, find the maximum and the minimum values of f f, where f=ni=1n(j=1maij)2+mj=1m(i=1naij)2(i=1nj=1maij)2+mni=1nj=1maij2. f = \frac {n\sum_{i = 1}^{n}(\sum_{j = 1}^{m}a_{ij})^2 + m\sum_{j = 1}^{m}(\sum_{i= 1}^{n}a_{ij})^2}{(\sum_{i = 1}^{n}\sum_{j = 1}^{m}a_{ij})^2 + mn\sum_{i = 1}^{n}\sum_{j=1}^{m}a_{ij}^2}.