MathDB
Problems
Contests
International Contests
JBMO ShortLists
2011 JBMO Shortlist
6
Simple inequality
Simple inequality
Source: JBMO 2011 Shortlist A6
May 16, 2016
inequalities
algebra
JBMO
Problem Statement
Let
x
i
>
1
,
∀
i
∈
{
1
,
2
,
3
,
…
,
2011
}
\displaystyle {x_i> 1, \forall i \in \left \{1, 2, 3, \ldots, 2011 \right \}}
x
i
>
1
,
∀
i
∈
{
1
,
2
,
3
,
…
,
2011
}
. Show that:
x
1
2
x
2
−
1
+
x
2
2
x
3
−
1
+
x
3
2
x
4
−
1
+
…
+
x
2010
2
x
2011
−
1
+
x
2011
2
x
1
−
1
≥
8044
\displaystyle{\frac{x^2_1}{x_2-1}+\frac{x^2_2}{x_3-1}+\frac{x^2_3}{x_4-1}+\ldots+\frac{x^2_{2010}}{x_{2011}-1}+\frac{x^2_{2011}}{x_1-1}\geq 8044}
x
2
−
1
x
1
2
+
x
3
−
1
x
2
2
+
x
4
−
1
x
3
2
+
…
+
x
2011
−
1
x
2010
2
+
x
1
−
1
x
2011
2
≥
8044
When the equality holds?
Back to Problems
View on AoPS