MathDB
Simple inequality

Source: JBMO 2011 Shortlist A6

May 16, 2016
inequalitiesalgebraJBMO

Problem Statement

Let xi>1,i{1,2,3,,2011}\displaystyle {x_i> 1, \forall i \in \left \{1, 2, 3, \ldots, 2011 \right \}}. Show that:x12x21+x22x31+x32x41++x20102x20111+x20112x118044\displaystyle{\frac{x^2_1}{x_2-1}+\frac{x^2_2}{x_3-1}+\frac{x^2_3}{x_4-1}+\ldots+\frac{x^2_{2010}}{x_{2011}-1}+\frac{x^2_{2011}}{x_1-1}\geq 8044} When the equality holds?