MathDB
x^2 \sqrt {1+2y^2} + y^2 \sqrt {1+2x^2} \geq xy (x+y+\sqrt{2})

Source: Tuymaada Junior 2003 p5

May 11, 2019
algebraradical inequalityInequality

Problem Statement

Prove that for any real x x and y y the inequality x21+2y2+y21+2x2xy(x+y+2)x^2 \sqrt {1+2y^2} + y^2 \sqrt {1+2x^2} \geq xy (x+y+\sqrt{2}) .