MathDB
Easy sequence- Serbia Mathematical Olympiad 2011- Problem 1

Source:

April 8, 2011
inequalitiesinductionalgebra proposedalgebra

Problem Statement

Let n2n \ge 2 be integer. Let a0a_0, a1a_1, ... ana_n be sequence of positive reals such that: (ak1+ak)(ak+ak+1)=ak1ak+1(a_{k-1}+a_k)(a_k+a_{k+1})=a_{k-1}-a_{k+1}, for k=1,2,...,n1k=1, 2, ..., n-1. Prove an<1n1a_n< \frac{1}{n-1}.