MathDB
Prove that three lines intersect at a point

Source: IMOC 2021 G1

August 11, 2021
geometryaltitudeantipodecyclic quadrilateral

Problem Statement

Let BE\overline{BE} and CF\overline{CF} be altitudes of triangle ABCABC, and let DD be the antipodal point of AA on the circumcircle of ABCABC. The lines DE\overleftrightarrow{DE} and DF\overleftrightarrow{DF} intersect (ABC)\odot(ABC) again at YY and ZZ, respectively. Show that YZ\overleftrightarrow{YZ}, EF\overleftrightarrow{EF} and BC\overleftrightarrow{BC} intersect at a point.