MathDB
Problems
Contests
National and Regional Contests
China Contests
National High School Mathematics League
1989 National High School Mathematics League
5
Two Sets
Two Sets
Source: 1989 National High School Mathematics League, Exam One, Problem 5
February 25, 2020
Problem Statement
If
M
=
{
z
∈
C
∣
z
=
t
1
+
t
+
i
1
+
t
t
,
t
∈
R
,
t
≠
0
,
t
≠
−
1
}
M=\{z\in\mathbb{C}|z=\frac{t}{1+t}+\text{i}\frac{1+t}{t},t\in\mathbb{R},t\neq0,t\neq-1\}
M
=
{
z
∈
C
∣
z
=
1
+
t
t
+
i
t
1
+
t
,
t
∈
R
,
t
=
0
,
t
=
−
1
}
,
N
=
{
z
∈
C
∣
z
=
2
[
cos
(
arcsin
t
)
+
i
cos
(
arccos
t
)
]
,
t
∈
R
,
∣
t
∣
≤
1
}
N=\{z\in\mathbb{C}|z=\sqrt2[\cos(\arcsin t)+\text{i}\cos(\arccos t)],t\in\mathbb{R},|t|\leq1\}
N
=
{
z
∈
C
∣
z
=
2
[
cos
(
arcsin
t
)
+
i
cos
(
arccos
t
)]
,
t
∈
R
,
∣
t
∣
≤
1
}
, then
∣
M
∩
N
∣
|M\cap N|
∣
M
∩
N
∣
is
(A)
0
(B)
1
(C)
2
(D)
4
\text{(A)}0\qquad\text{(B)}1\qquad\text{(C)}2\qquad\text{(D)}4
(A)
0
(B)
1
(C)
2
(D)
4
Back to Problems
View on AoPS