MathDB
Bosnia and Herzegovina 2022 BMO TST P1

Source:

May 22, 2022
Sequencealgebra

Problem Statement

Let a1,a2,a3,a_1,a_2,a_3, \ldots be an infinite sequence of nonnegative real numbers such that for all positive integers kk the following conditions hold:
i)i) ak2ak+1+ak+20a_k-2a_{k+1}+a_{k+2} \geq 0; ii)ii) j=1kaj1\sum_{j=1}^{k} a_j \leq 1. Prove that for all positive integer kk holds: 0akak+1<2k20 \leq a_k - a_{k+1} < \frac{2}{k^2}