MathDB
inequality on polynomials

Source: All-Russian 2007

May 4, 2007
inequalitiesalgebrapolynomialinductionalgebra unsolved

Problem Statement

Given polynomial P(x)=a0xn+a1xn1++an1x+anP(x) = a_{0}x^{n}+a_{1}x^{n-1}+\dots+a_{n-1}x+a_{n}. Put m=min{a0,a0+a1,,a0+a1++an}m=\min \{ a_{0}, a_{0}+a_{1}, \dots, a_{0}+a_{1}+\dots+a_{n}\}. Prove that P(x)mxnP(x) \ge mx^{n} for x1x \ge 1. A. Khrabrov