MathDB
Geometric inequality.

Source: Turkey MO 2004.

February 27, 2005
geometryinequalitiesparallelograminequalities solvedGeometric Inequalities

Problem Statement

Let ABCDABCD be a convex quadrilateral and K,L,M,NK,L,M,N be points on [AB],[BC],[CD],[DA][AB],[BC],[CD],[DA], respectively. Show that, s13+s23+s33+s432s3 \sqrt[3]{s_{1}}+\sqrt[3]{s_{2}}+\sqrt[3]{s_{3}}+\sqrt[3]{s_{4}}\leq 2\sqrt[3]{s} where s1=Area(AKN)s_1=\text{Area}(AKN), s2=Area(BKL)s_2=\text{Area}(BKL), s3=Area(CLM)s_3=\text{Area}(CLM), s4=Area(DMN)s_4=\text{Area}(DMN) and s=Area(ABCD)s=\text{Area}(ABCD).