MathDB
|1 + ab| + |a + b| >= \sqrt{|a^2 - 1| \cdot |b^2 - 1|} , complex

Source: Indian Postal Coaching 2008 set 6 p3

May 25, 2020
complexinequalitiesalgebra

Problem Statement

Let aa and bb be two complex numbers. Prove the inequality 1+ab+a+ba21b21|1 + ab| + |a + b| \ge \sqrt{|a^2 - 1| \cdot |b^2 - 1|}