Consider the function f:N0→N0, where N0 is the set of all non-negative
integers, defined by the following conditions : (i) f(0) \equal{} 0; (ii) f(2n) \equal{} 2f(n) and (iii) f(2n \plus{} 1) \equal{} n \plus{} 2f(n) for all n≥0.(a) Determine the three sets L \equal{} \{ n | f(n) < f(n \plus{} 1) \}, E \equal{} \{n | f(n) \equal{} f(n \plus{} 1) \}, and G \equal{} \{n | f(n) > f(n \plus{} 1) \}.
(b) For each k≥0, find a formula for a_k \equal{} \max\{f(n) : 0 \leq n \leq 2^k\} in terms of k. functioninductionmodular arithmeticalgebra proposedalgebrabinary representation