MathDB
Function with nonnegative integers

Source: APMO 2008 problem 4

March 22, 2008
functioninductionmodular arithmeticalgebra proposedalgebrabinary representation

Problem Statement

Consider the function f:N0N0 f: \mathbb{N}_0\to\mathbb{N}_0, where N0 \mathbb{N}_0 is the set of all non-negative integers, defined by the following conditions :
(i) (i) f(0) \equal{} 0; (ii) (ii) f(2n) \equal{} 2f(n) and (iii) (iii) f(2n \plus{} 1) \equal{} n \plus{} 2f(n) for all n0 n\geq 0.
(a) (a) Determine the three sets L \equal{} \{ n | f(n) < f(n \plus{} 1) \}, E \equal{} \{n | f(n) \equal{} f(n \plus{} 1) \}, and G \equal{} \{n | f(n) > f(n \plus{} 1) \}. (b) (b) For each k0 k \geq 0, find a formula for a_k \equal{} \max\{f(n) : 0 \leq n \leq 2^k\} in terms of k k.