MathDB
Problems
Contests
International Contests
Austrian-Polish
1983 Austrian-Polish Competition
1
1
Part of
1983 Austrian-Polish Competition
Problems
(1)
a^5 + b^5 <= 1 and x^5 + y^5 <= 1 then a^2x^3 + b^2y^3 <= 1 for a,b,x,y>=0
Source: Austrian Polish 1983 APMC
4/30/2020
Nonnegative real numbers
a
,
b
,
x
,
y
a, b,x,y
a
,
b
,
x
,
y
satisfy
a
5
+
b
5
≤
a^5 + b^5 \le
a
5
+
b
5
≤
1 and
x
5
+
y
5
≤
1
x^5 + y^5 \le 1
x
5
+
y
5
≤
1
. Prove that
a
2
x
3
+
b
2
y
3
≤
1
a^2x^3 + b^2y^3 \le 1
a
2
x
3
+
b
2
y
3
≤
1
.
inequalities
algebra