MathDB
a^5 + b^5 <= 1 and x^5 + y^5 <= 1 then a^2x^3 + b^2y^3 <= 1 for a,b,x,y>=0

Source: Austrian Polish 1983 APMC

April 30, 2020
inequalitiesalgebra

Problem Statement

Nonnegative real numbers a,b,x,ya, b,x,y satisfy a5+b5a^5 + b^5 \le 1 and x5+y51x^5 + y^5 \le 1. Prove that a2x3+b2y31a^2x^3 + b^2y^3 \le 1.