MathDB
Problems
Contests
International Contests
Balkan MO
2002 Balkan MO
4
4
Part of
2002 Balkan MO
Problems
(1)
Integer functions fulfilling a double inequality
Source: Balkan MO 2002, problem 4
4/24/2006
Determine all functions
f
:
N
→
N
f: \mathbb N\to \mathbb N
f
:
N
→
N
such that for every positive integer
n
n
n
we have:
2
n
+
2001
≤
f
(
f
(
n
)
)
+
f
(
n
)
≤
2
n
+
2002.
2n+2001\leq f(f(n))+f(n)\leq 2n+2002.
2
n
+
2001
≤
f
(
f
(
n
))
+
f
(
n
)
≤
2
n
+
2002.
function
inequalities
algebra proposed
algebra