MathDB
Integer functions fulfilling a double inequality

Source: Balkan MO 2002, problem 4

April 24, 2006
functioninequalitiesalgebra proposedalgebra

Problem Statement

Determine all functions f:NNf: \mathbb N\to \mathbb N such that for every positive integer nn we have: 2n+2001f(f(n))+f(n)2n+2002. 2n+2001\leq f(f(n))+f(n)\leq 2n+2002.