MathDB
Problems
Contests
International Contests
CentroAmerican
2019 Centroamerican and Caribbean Math Olympiad
1
1
Part of
2019 Centroamerican and Caribbean Math Olympiad
Problems
(1)
2019 Central American and Caribbean Mathematical Olympiad , P1
Source:
6/18/2019
Let
N
=
a
b
c
d
‾
N=\overline{abcd}
N
=
ab
c
d
be a positive integer with four digits. We name plátano power to the smallest positive integer
p
(
N
)
=
α
1
α
2
…
α
k
‾
p(N)=\overline{\alpha_1\alpha_2\ldots\alpha_k}
p
(
N
)
=
α
1
α
2
…
α
k
that can be inserted between the numbers
a
b
‾
\overline{ab}
ab
and
c
d
‾
\overline{cd}
c
d
in such a way the new number
a
b
α
1
α
2
…
α
k
c
d
‾
\overline{ab\alpha_1\alpha_2\ldots\alpha_kcd}
ab
α
1
α
2
…
α
k
c
d
is divisible by
N
N
N
. Determine the value of
p
(
2025
)
p(2025)
p
(
2025
)
.
number theory