MathDB
2019 Central American and Caribbean Mathematical Olympiad , P1

Source:

June 18, 2019
number theory

Problem Statement

Let N=abcdN=\overline{abcd} be a positive integer with four digits. We name plátano power to the smallest positive integer p(N)=α1α2αkp(N)=\overline{\alpha_1\alpha_2\ldots\alpha_k} that can be inserted between the numbers ab\overline{ab} and cd\overline{cd} in such a way the new number abα1α2αkcd\overline{ab\alpha_1\alpha_2\ldots\alpha_kcd} is divisible by NN. Determine the value of p(2025)p(2025).