MathDB
Problems
Contests
International Contests
Cono Sur Olympiad
2010 Cono Sur Olympiad
4
4
Part of
2010 Cono Sur Olympiad
Problems
(1)
Cono Sur Olympiad 2010, Problem 4
Source:
8/30/2014
Pablo and Silvia play on a
2010
×
2010
2010 \times 2010
2010
×
2010
board. To start the game, Pablo writes an integer in every cell. After he is done, Silvia repeats the following operation as many times as she wants: she chooses three cells that form an
L
L
L
, like in the figure below, and adds
1
1
1
to each of the numbers in these three cells. Silvia wins if, after doing the operation many times, all of the numbers in the board are multiples of
10
10
10
. Prove that Silvia can always win.\begin{array}{|c|c} \cline{1-1} \; & \; \\ \hline \; & \multicolumn{1}{|c|}{\;} \\ \hline \end{array} \qquad \begin{array}{c|c|} \cline{2-2} \; & \; \\ \hline \multicolumn{1}{|c|}{\;} & \; \\ \hline \end{array} \qquad \begin{array}{|c|c} \hline \; & \multicolumn{1}{|c|}{\;} \\ \hline \multicolumn{1}{|c|}{\;} & \; \\ \cline{1-1} \end{array} \qquad \begin{array}{c|c|} \hline \multicolumn{1}{|c|}{\;} & \; \\ \hline \; & \multicolumn{1}{|c|}{\;} \\ \cline{2-2} \end{array}
cono sur