MathDB
Problems
Contests
International Contests
IberoAmerican
2005 IberoAmerican
3
3
Part of
2005 IberoAmerican
Problems
(1)
\sum{i^{-p}} = 0 mod p^3
Source:
9/28/2005
Let
p
>
3
p > 3
p
>
3
be a prime. Prove that if
∑
i
=
1
p
−
1
1
i
p
=
n
m
,
\sum_{i=1 }^{p-1}{1\over i^p} = {n\over m},
i
=
1
∑
p
−
1
i
p
1
=
m
n
,
with \gdc(n,m) = 1, then
p
3
p^3
p
3
divides
n
n
n
.
modular arithmetic
algebra
number theory
Divisibility