MathDB
\sum{i^{-p}} = 0 mod p^3

Source:

September 28, 2005
modular arithmeticalgebranumber theoryDivisibility

Problem Statement

Let p>3p > 3 be a prime. Prove that if i=1p11ip=nm, \sum_{i=1 }^{p-1}{1\over i^p} = {n\over m}, with \gdc(n,m) = 1, then p3p^3 divides nn.