10
Part of 1989 IMO Longlists
Problems(2)
4x^3 + 4x^2y - 15xy^2 - 18y^3 - 12x^2 + 6xy + 36y^2 + 5x...
Source: IMO Longlist 1989, Problem 10
9/18/2008
Given the equation 4x^3 \plus{} 4x^2y \minus{} 15xy^2 \minus{} 18y^3 \minus{} 12x^2 \plus{} 6xy \plus{} 36y^2 \plus{} 5x \minus{} 10y \equal{} 0, find all positive integer solutions.
algebra unsolvedalgebra
Find the maximum number c
Source: IMO Longlist 1989, Problem 109
9/18/2008
Find the maximum number such that for all to have where \{n \cdot \sqrt{2}\} \equal{} n \cdot \sqrt{2} \minus{} [n \cdot \sqrt{2}] and is the integer part of Determine for this number all for which \{n \cdot \sqrt{2}\} \equal{} \frac{c}{n}.
algebra unsolvedalgebra