Alice has two urns. Each urn contains four balls and on each ball a natural number is written. She draws one ball from each urn at random, notes the sum of the numbers written on them, and replaces the balls in the urns from which she took them. This she repeats a large number of times. Bill, on examining the numbers recorded, notices that the frequency with which each sum occurs is the same as if it were the sum of two natural numbers drawn at random from the range 1 to 4. What can he deduce about the numbers on the balls?