MathDB
Prove that f1 and f2 are independent

Source: IMO Longlist 1989, Problem 97

September 18, 2008
functionalgebradomainreal analysispolynomialalgebra unsolved

Problem Statement

An arithmetic function is a real-valued function whose domain is the set of positive integers. Define the convolution product of two arithmetic functions f f and g g to be the arithmetic function fg f * g, where (f * g)(n) \equal{} \sum_{ij\equal{}n} f(i) \cdot g(j), and f^{*k} \equal{} f * f * \ldots * f (k k times) We say that two arithmetic functions f f and g g are dependent if there exists a nontrivial polynomial of two variables P(x, y) \equal{} \sum_{i,j} a_{ij} x^i y^j with real coefficients such that P(f,g) \equal{} \sum_{i,j} a_{ij} f^{*i} * g^{*j} \equal{} 0, and say that they are independent if they are not dependent. Let p p and q q be two distinct primes and set f_1(n) \equal{} \begin{cases} 1 & \text{ if } n \equal{} p, \\ 0 & \text{ otherwise}. \end{cases} f_2(n) \equal{} \begin{cases} 1 & \text{ if } n \equal{} q, \\ 0 & \text{ otherwise}. \end{cases} Prove that f1 f_1 and f2 f_2 are independent.