Prove that f(a + b) = max{f(a), f(b)}
Source: IMO Longlist 1989, Problem 81
September 18, 2008
functionalgebra unsolvedalgebra
Problem Statement
A real-valued function on satisfies the following conditions for arbitrary (i) f(0) \equal{} 0,
(ii)
(iii) f(\alpha \cdot \beta) \equal{} f(\alpha)f(\beta),
(iv) f(\alpha \plus{} \beta) \leq f(\alpha) \plus{} f(\beta),
(v) Prove that f(\alpha \plus{} \beta) \equal{} \max\{f(\alpha), f(\beta)\} \text{ if } f(\alpha) \neq f(\beta).