A real-valued function f on Q satisfies the following conditions for arbitrary α,β∈Q:(i) f(0) \equal{} 0,
(ii) f(α)>0 if α=0,
(iii) f(\alpha \cdot \beta) \equal{} f(\alpha)f(\beta),
(iv) f(\alpha \plus{} \beta) \leq f(\alpha) \plus{} f(\beta),
(v) f(m)≤1989 ∀m∈Z.Prove that f(\alpha \plus{} \beta) \equal{} \max\{f(\alpha), f(\beta)\} \text{ if } f(\alpha) \neq f(\beta). functionalgebra unsolvedalgebra